

- **Team:** John McKenzie, Lisa Wick, Alex Lleonart, Trey Porter, Dylan Alvarez, Jessica Sierra
- **Faculty Coach:** Keith Rambo
- **Liaison Engineers:** Jessica McDaniel, Mary-Alice Beck

Problem Statement

Employees and visitors at Northrop Grumman spend extensive amounts of time trying to find open parking spots, and the security team has a hard time enforcing parking regulations

Mission Statement

> To develop a parking system and its connected application to shorten the amount of time employees spend parking and better enforce parking rules

Required System Specifications

The System Shall:

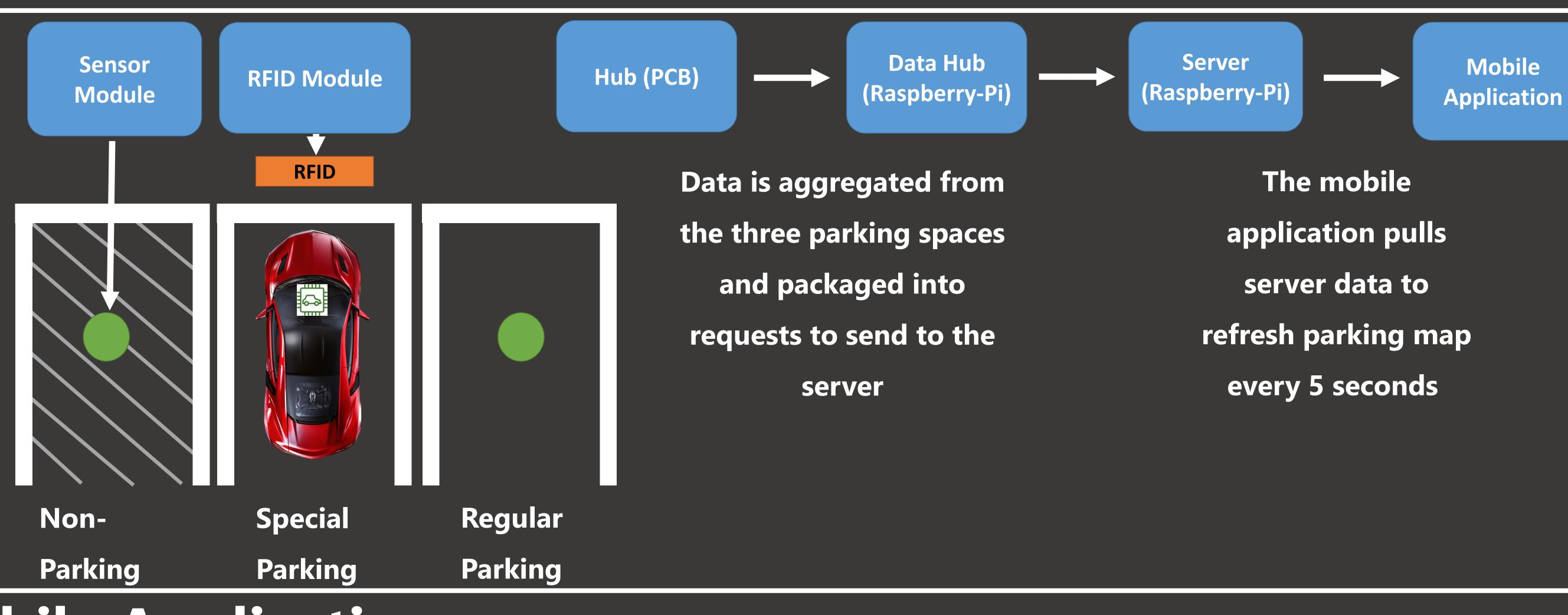
- \succ Detect open spots with a minimum of 90% accuracy
- \blacktriangleright Detect parking violations with a minimum 90% accuracy
- Be private, non-invasive, secure, accurate, and easy to use

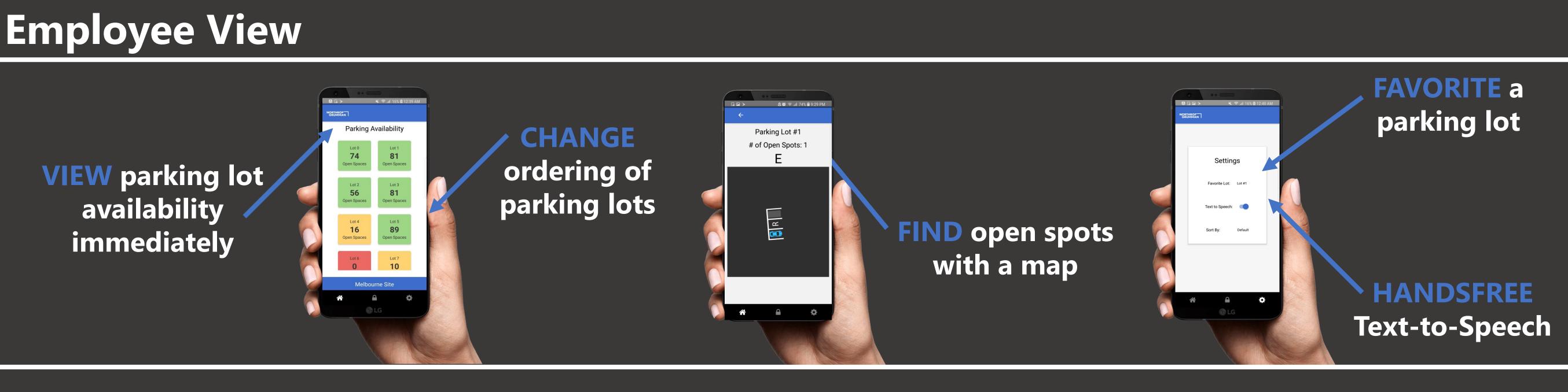
Analysis/Results

Table 1 below shows a summary of test results done with the full system as well as by each module of the system.

TABLE 1: Results Summary	
Full System Tests	

Full System Tests				
8-Hour Test	98% accuracy, 100% up-time			
End-to-End Latency	Average - 17.7 seconds			
Sensor	Module Unit Tests			
Accuracy	100%*			
Battery Life	> 5 years			
Weather Resistance/ Mechanical Stress	Passed - IP68, <7,500 pounds			
Hub Module Unit Tests				
Range/Throughput	175ft for 100% accuracy at 50 bps			
Water Resistance	Passed - IP67			
RFID Module Unit Tests				
Antenna Range/Positioning Accuracy	Height – 60in, 22dBm output power for ideal range 100%*			
App/Server Unit Tests				
App Unit Tests	~80% Code Coverage			
Server Throughput	250-300 requests per second			




Open Spot Tracking

Prototype Overview:

The final prototype parking system has 3 types of parking spaces: Regular parking spaces consist of a sensor module to determine spot occupancy. Special parking spots (i.e. carpool, electric vehicles) also have an RFID module and require employees to display an RFID rearview hangtag to park. Non-parking areas are cross-hatched, restricted areas which contain a sensor module to track violators.

Mobile Application:

Security Team View

Follow QR for full paper:

Business Case

Table 2 shows the cost per parking space for the developed prototype system.

TABLE 2: Prototype Cost			
3-Spot Prototype			
Module	Cost		
Proximity Sensor (x3)	\$	491.52	
Hub and Router (x1)	\$	462.54	
RFID (x1)	\$	1,106.45	
Server (x1)	\$	62.29	
Subtotal	\$	2,122.80	
Cost Per Spot	\$	707.60	

Table 3 shows the approximate cost per parking space if system is implemented in Northrop Grumman's site with 5,000 parking spaces

TABLE 3: Scal	ed System	Estimate**

Estimate for 5000 Spot System			
Module	Cost		
Proximity Sensor (x5000)	\$	819,200.00	
Hub (x157)	\$	26,768.50	
Router (x500)	\$	62,570.00	
RFID (x300)	\$	105,500.00	
Miscellaneous	\$	8,345.00	
Subtotal	\$	2,122.80	
Cost Per Spot	\$	204.48	

Technical Performance Measures

Table 4 below details the technical performance measures of the final prototype system.

TABLE	= 4 · -	TPMs

TPM	Target	Actuals			
Accurately Detects Viola tions	90%	100%*			
Accurately Detects Open Spots	90%	100%*			
Server up- time	95%	100%			
Mobile App Updates	10 sec	Avg: 17.7 sec			
Prototype Cost per Spot	<\$500	Total Cost = \$2122.80 Total Cost per Spot = \$707.60			
Color Codes:		Red =Yellow =Green =Blue =UnacceInMet+10%ptableTroubleInIn			

*Accuracy tests were conducted on 3 different vehicles. In 80 trials per car, pulling in and backing in, partially and fully, 100% accuracy was found. Further characterization is recommended for the scaled-up system to ensure >90% accuracy for all vehicles. **Does not include non-spot costs

> **UF** Herbert Wertheim College of Engineer **College of Engineering** Department of Engineering Education UNIVERSITY of FLORIDA